Skip to contents

Access methods for Assignment S4 class

Usage

featureData(assignment)

# S4 method for Assignment
featureData(assignment)

correlations(assignment)

# S4 method for Assignment
correlations(assignment)

relationships(assignment)

# S4 method for Assignment
relationships(assignment)

iterations(assignment)

# S4 method for Assignment
iterations(assignment)

graph(assignment, iteration, type = c("selected", "all"))

# S4 method for Assignment
graph(assignment, iteration, type = c("selected", "all"))

components(assignment, iteration, type = c("selected", "all"))

# S4 method for Assignment
components(assignment, iteration, type = c("selected", "all"))

featureComponents(assignment, feature, type = c("selected", "all"))

# S4 method for Assignment
featureComponents(assignment, feature, type = c("selected", "all"))

component(assignment, component, iteration, type = c("selected", "all"))

# S4 method for Assignment
component(assignment, component, iteration, type = c("selected", "all"))

assignments(assignment)

# S4 method for Assignment
assignments(assignment)

assignedData(assignment)

# S4 method for Assignment
assignedData(assignment)

summariseAssignments(assignment)

# S4 method for Assignment
summariseAssignments(assignment)

Arguments

assignment

S4 object of class Assignment

iteration

the assignment iteration

type

the graph type to return. filtered returns the assignment graph after component selection. all returns all assignment components.

feature

feature information to extract

component

component number to extract

Value

A tibble or tbl_graph containing assignment results depending on the method used.

Details

  • featureData - Return the initially specifed m/z feature data.

  • correlations - Return the correlation analysis results.

  • relationships - Return the calculated relationships.

  • iterations - Return the assignment iteration performed.

  • graph - Return a selected graph.

  • components - Return the component information for an assignment iteration.

  • featureComponents - Return the component information for a selected feature.

  • component - Extract a component graph.

  • assignments - Return the molecular formulas assigned to the m/z features.

  • assignedData - Return the m/z peak intensity matrix with the molecular formula assignments included in the column names.

  • summariseAssignments - Return a tibble of the assignments summarised by molecular formula.

Examples

plan(future::sequential)
p <- assignmentParameters('FIE-HRMS')

mf_assignments <- assignMFs(feature_data,p)
#> 
#> assignments v1.0.2 Thu Jan 11 15:06:54 2024
#> ________________________________________________________________________________
#> Assignment Parameters: 
#> 
#> 	 Technique:		 FIE-HRMS 
#> 	 Max M:			 800 
#> 	 MF rank threshold:	 3 
#> 	 PPM threshold:		 4 
#> 	 Relationship limit:	 0.001 
#> 	 RT limit:		  
#> 	 Correlations:
#> 		method: spearman
#>  		pAdjustMethod: bonferroni
#>  		corPvalue: 0.05
#>  		minCoef: 0.7
#>  		maxCor: Inf
#> 
#> 	 Adducts: 
#> 	 n: [M-H]1-, [M+Cl]1-, [M+Cl37]1-, [M+K-2H]1-, [M-2H]2-, [2M-H]1-
#> 	 p: [M+H]1+, [M+K]1+, [M+Na]1+, [M+K41]1+, [M+2H]2+, [2M+H]1+ 
#> 	 Isotopes: 13C, 18O 
#> 	 Transformations: M - [O] + [NH2], M - [OH] + [NH2], M + [H2], M - [H2] + [O], M - [H] + [CH3], M - [H] + [NH2], M - [H] + [OH], M + [H2O], M - [H3] + [H2O], M - [H] + [CHO2], M - [H] + [SO3], M - [H] + [PO3H2]
#> ________________________________________________________________________________
#> No. m/z:	10
#> Calculating correlations 
#> Calculating correlations 	 [10 correlations] [0.2S]
#> Calculating relationships 
#> Calculating relationships 	 [2S]
#> Adduct & isotopic assignment 
#> generating molecular formulas…

#> generating molecular formulas	 [8.5S]
#> iteration 1…

#> iteration 1			 [0.5S]
#> iteration 2…

#> Adduct & isotopic assignment 	 [9.6S]
#> Transformation assignment
#> iteration 1 …

#> iteration 1 			 [1.2S]
#> iteration 2 …

#> Transformation assignment 	 [1.2S]
#> ________________________________________________________________________________
#> 
#> Complete! [13.4S]

## Return feature data
featureData(mf_assignments)
#> # A tibble: 60 × 10
#>    n191.01962 n192.02306 n193.02388 n226.99693 n228.97636 n228.99274 n231.00069
#>         <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
#>  1     0.109     0.00401   0.000609   0.000417   0.00135   0.0000912   0.00122 
#>  2     0.0955    0.00346   0.000466   0.000306   0.00110   0.0000847   0.000831
#>  3     0.109     0.00418   0.000637   0.000294   0.00113   0.0000879   0.00126 
#>  4     0.102     0.00360   0.000516   0.000366   0.00107   0.000107    0.00113 
#>  5     0.0956    0.00315   0.000520   0.000487   0.000873  0.000111    0.000840
#>  6     0.0940    0.00350   0.000440   0.000311   0.00112   0.0000228   0.00106 
#>  7     0.128     0.00578   0.000784   0.000333   0.00113   0.000137    0.00140 
#>  8     0.0890    0.00345   0.000483   0.000365   0.00104   0.000100    0.000951
#>  9     0.0887    0.00317   0.000469   0.000463   0.000829  0.000151    0.000922
#> 10     0.0996    0.00369   0.000539   0.000490   0.000866  0.000193    0.00100 
#> # ℹ 50 more rows
#> # ℹ 3 more variables: n384.0495 <dbl>, n385.04874 <dbl>, p208.04518 <dbl>

## Return correlations
correlations(mf_assignments)
#> # A tibble: 10 × 12
#>    Feature1   Feature2   Mode1 Mode2 `m/z1` `m/z2` RetentionTime1 RetentionTime2
#>    <chr>      <chr>      <chr> <chr>  <dbl>  <dbl>          <dbl>          <dbl>
#>  1 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  2 n191.01962 n192.02306 n     n       191.   192.             NA             NA
#>  3 n192.02306 p208.04518 n     p       192.   208.             NA             NA
#>  4 n231.00069 n384.0495  n     n       231.   384.             NA             NA
#>  5 n226.99693 n228.99274 n     n       227.   229.             NA             NA
#>  6 n191.01962 n193.02388 n     n       191.   193.             NA             NA
#>  7 n193.02388 p208.04518 n     p       193.   208.             NA             NA
#>  8 n192.02306 n193.02388 n     n       192.   193.             NA             NA
#>  9 n191.01962 n231.00069 n     n       191.   231.             NA             NA
#> 10 n231.00069 p208.04518 n     p       231.   208.             NA             NA
#> # ℹ 4 more variables: RetentionTimeDiff <dbl>, log2IntensityRatio <dbl>,
#> #   coefficient <dbl>, ID <int>

## Return relationships
relationships(mf_assignments)
#> # A tibble: 35 × 19
#>    Feature1   Feature2   Mode1 Mode2 `m/z1` `m/z2` RetentionTime1 RetentionTime2
#>    <chr>      <chr>      <chr> <chr>  <dbl>  <dbl>          <dbl>          <dbl>
#>  1 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  2 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  3 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  4 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  5 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  6 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  7 n191.01962 p208.04518 n     p       191.   208.             NA             NA
#>  8 n191.01962 n192.02306 n     n       191.   192.             NA             NA
#>  9 n191.01962 n192.02306 n     n       191.   192.             NA             NA
#> 10 n191.01962 n192.02306 n     n       191.   192.             NA             NA
#> # ℹ 25 more rows
#> # ℹ 11 more variables: RetentionTimeDiff <dbl>, Adduct1 <chr>, Adduct2 <chr>,
#> #   Isotope1 <chr>, Isotope2 <chr>, Transformation1 <chr>,
#> #   Transformation2 <chr>, log2IntensityRatio <dbl>, coefficient <dbl>,
#> #   Error <dbl>, ID <int>

## Return the available iterations
iterations(mf_assignments)
#> [1] "A&I1" "T1"  

## Return a selected graph
graph(mf_assignments,'A&I1')
#> # A tbl_graph: 5 nodes and 4 edges
#> #
#> # A directed acyclic simple graph with 2 components
#> #
#> # Node Data: 5 × 21 (active)
#>   name   Feature RetentionTime Isotope Adduct MF    `Theoretical M` `Measured M`
#>   <chr>  <chr>           <dbl> <chr>   <chr>  <chr>           <dbl>        <dbl>
#> 1 n191.… n191.0…            NA NA      [M-H]… C6H8…            192.         192.
#> 2 n192.… n192.0…            NA 13C     [M-H]… C6H8…            192.         192.
#> 3 n193.… n193.0…            NA 18O     [M-H]… C6H8…            192.         192.
#> 4 n226.… n226.9…            NA NA      [M+Cl… C6H8…            192.         192.
#> 5 n228.… n228.9…            NA NA      [M+Cl… C6H8…            192.         192.
#> # ℹ 13 more variables: `Theoretical m/z` <dbl>, `Measured m/z` <dbl>,
#> #   `PPM error` <dbl>, `MF Plausibility (%)` <dbl>, AIS <dbl>, ID <int>,
#> #   Component <dbl>, Size <dbl>, Nodes <int>, Degree <dbl>, Density <dbl>,
#> #   `Component Plausibility` <dbl>, Weight <dbl>
#> #
#> # Edge Data: 4 × 23
#>    from    to Feature1   Feature2   Mode1 Mode2 `m/z1` `m/z2` RetentionTime1
#>   <int> <int> <chr>      <chr>      <chr> <chr>  <dbl>  <dbl>          <dbl>
#> 1     1     2 n191.01962 n192.02306 n     n       191.   192.             NA
#> 2     1     3 n191.01962 n193.02388 n     n       191.   193.             NA
#> 3     2     3 n192.02306 n193.02388 n     n       192.   193.             NA
#> # ℹ 1 more row
#> # ℹ 14 more variables: RetentionTime2 <dbl>, RetentionTimeDiff <dbl>,
#> #   Adduct1 <chr>, Adduct2 <chr>, Isotope1 <chr>, Isotope2 <chr>,
#> #   Transformation1 <chr>, Transformation2 <chr>, log2IntensityRatio <dbl>,
#> #   coefficient <dbl>, Error <dbl>, ID <int>, MF1 <chr>, MF2 <chr>

## Return a component information for a selected graph
components(mf_assignments,'A&I1')
#> # A tibble: 2 × 6
#>   Component  Size Nodes Degree Density `Component Plausibility`
#>       <dbl> <dbl> <int>  <dbl>   <dbl>                    <dbl>
#> 1         1     3     3      2       1                0.00107  
#> 2        11     1     2      1       1                0.0000981

## Return a component information for a selected feature
featureComponents(mf_assignments,'n191.01962')
#> # A tibble: 2 × 22
#>   Iteration name      Feature RetentionTime Isotope Adduct MF    `Theoretical M`
#>   <chr>     <chr>     <chr>           <dbl> <chr>   <chr>  <chr>           <dbl>
#> 1 A&I1      n191.019… n191.0…            NA NA      [M-H]… C6H8…            192.
#> 2 T1        n191.019… n191.0…            NA NA      [M-H]… C6H8…            192.
#> # ℹ 14 more variables: `Measured M` <dbl>, `Theoretical m/z` <dbl>,
#> #   `Measured m/z` <dbl>, `PPM error` <dbl>, `MF Plausibility (%)` <dbl>,
#> #   AIS <dbl>, ID <int>, Component <dbl>, Size <dbl>, Nodes <int>,
#> #   Degree <dbl>, Density <dbl>, `Component Plausibility` <dbl>, Weight <dbl>

 ## Extract a component graph
component(mf_assignments,1,'A&I1')
#> # A tbl_graph: 3 nodes and 3 edges
#> #
#> # A directed acyclic simple graph with 1 component
#> #
#> # Node Data: 3 × 21 (active)
#>   name   Feature RetentionTime Isotope Adduct MF    `Theoretical M` `Measured M`
#>   <chr>  <chr>           <dbl> <chr>   <chr>  <chr>           <dbl>        <dbl>
#> 1 n191.… n191.0…            NA NA      [M-H]… C6H8…            192.         192.
#> 2 n192.… n192.0…            NA 13C     [M-H]… C6H8…            192.         192.
#> 3 n193.… n193.0…            NA 18O     [M-H]… C6H8…            192.         192.
#> # ℹ 13 more variables: `Theoretical m/z` <dbl>, `Measured m/z` <dbl>,
#> #   `PPM error` <dbl>, `MF Plausibility (%)` <dbl>, AIS <dbl>, ID <int>,
#> #   Component <dbl>, Size <dbl>, Nodes <int>, Degree <dbl>, Density <dbl>,
#> #   `Component Plausibility` <dbl>, Weight <dbl>
#> #
#> # Edge Data: 3 × 23
#>    from    to Feature1   Feature2   Mode1 Mode2 `m/z1` `m/z2` RetentionTime1
#>   <int> <int> <chr>      <chr>      <chr> <chr>  <dbl>  <dbl>          <dbl>
#> 1     1     2 n191.01962 n192.02306 n     n       191.   192.             NA
#> 2     1     3 n191.01962 n193.02388 n     n       191.   193.             NA
#> 3     2     3 n192.02306 n193.02388 n     n       192.   193.             NA
#> # ℹ 14 more variables: RetentionTime2 <dbl>, RetentionTimeDiff <dbl>,
#> #   Adduct1 <chr>, Adduct2 <chr>, Isotope1 <chr>, Isotope2 <chr>,
#> #   Transformation1 <chr>, Transformation2 <chr>, log2IntensityRatio <dbl>,
#> #   coefficient <dbl>, Error <dbl>, ID <int>, MF1 <chr>, MF2 <chr>

## Return assignments
assignments(mf_assignments)
#> # A tibble: 6 × 15
#>   Name   Feature RetentionTime Isotope Adduct MF    `Theoretical M` `Measured M`
#>   <chr>  <chr>           <dbl> <chr>   <chr>  <chr>           <dbl>        <dbl>
#> 1 n191.… n191.0…            NA NA      [M-H]… C6H8…            192.         192.
#> 2 n192.… n192.0…            NA 13C     [M-H]… C6H8…            192.         192.
#> 3 n193.… n193.0…            NA 18O     [M-H]… C6H8…            192.         192.
#> 4 n226.… n226.9…            NA NA      [M+Cl… C6H8…            192.         192.
#> 5 n228.… n228.9…            NA NA      [M+Cl… C6H8…            192.         192.
#> 6 p208.… p208.0…            NA NA      [M+H]… C6H9…            207.         207.
#> # ℹ 7 more variables: `Theoretical m/z` <dbl>, `Measured m/z` <dbl>,
#> #   `PPM error` <dbl>, `MF Plausibility (%)` <dbl>, Mode <chr>,
#> #   Component <dbl>, Iteration <chr>

## Return an m/z intensity matrix with the assignments included
## in the column names
assignedData(mf_assignments)
#> # A tibble: 60 × 10
#>    `n191.01962 C6H8O7  [M-H]1-` n192.02306 C6H8O7 13C […¹ n193.02388 C6H8O7 18…²
#>                           <dbl>                     <dbl>                  <dbl>
#>  1                       0.109                    0.00401               0.000609
#>  2                       0.0955                   0.00346               0.000466
#>  3                       0.109                    0.00418               0.000637
#>  4                       0.102                    0.00360               0.000516
#>  5                       0.0956                   0.00315               0.000520
#>  6                       0.0940                   0.00350               0.000440
#>  7                       0.128                    0.00578               0.000784
#>  8                       0.0890                   0.00345               0.000483
#>  9                       0.0887                   0.00317               0.000469
#> 10                       0.0996                   0.00369               0.000539
#> # ℹ 50 more rows
#> # ℹ abbreviated names: ¹​`n192.02306 C6H8O7 13C [M-H]1-`,
#> #   ²​`n193.02388 C6H8O7 18O [M-H]1-`
#> # ℹ 7 more variables: `n226.99693 C6H8O7  [M+Cl]1-` <dbl>, n228.97636 <dbl>,
#> #   `n228.99274 C6H8O7  [M+Cl37]1-` <dbl>, n231.00069 <dbl>, n384.0495 <dbl>,
#> #   n385.04874 <dbl>, `p208.04518 C6H9NO7  [M+H]1+` <dbl>

## Return the assignments summarised by molecular formula
summariseAssignments(mf_assignments)
#> # A tibble: 2 × 4
#>   MF      Features                                  Isotopes & Ionisatio…¹ Count
#>   <chr>   <chr>                                     <chr>                  <int>
#> 1 C6H8O7  n191.01962; n192.02306; n193.02388; n226… " [M-H]1-; 13C [M-H]1…     5
#> 2 C6H9NO7 p208.04518                                " [M+H]1+"                 1
#> # ℹ abbreviated name: ¹​`Isotopes & Ionisation Products`